Skip to main content
King Abdullah University of Science and Technology
KAUST
Main navigation
Home
Publications
ISL Publications Repository
Research Output
MoS2
Experimental Verification of a Fractional-Order Wien Oscillator Built Using Solid-State Capacitors
1 min read ·
Thu, Apr 26 2018
News
MoS2
Circuits
foc
Kartci, Aslihan, et al. "Experimental Verification of a Fractional-Order Wien Oscillator Built Using Solid-State Capacitors." 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2018, 544. A new type of fractional-order capacitors (FOCs) is fabricated using a molybdenum disulfide (MoS 2 )-ferroelectric polymer composite. The phase angle of this FOC's impedance remains constant between 100 Hz and 10MHz with only a small deviation of ±4 degrees. The performance of the fabricated FOCs is further tested using the well-known Wien oscillator. The main motivation of
An ultra-broadband single-component fractional-order capacitor using MoS2-ferroelectric polymer composite
1 min read ·
Thu, Apr 26 2018
News
MoS2
Circuits
foc
Agamyrat Agambayev, et al., "An ultra-broadband single-component fractional-order capacitor using MoS2-ferroelectric polymer composite". Applied Physics Letters, 113(9),2018, 093505. The phase angle of a fractional-order capacitor's (FOC) impedance has a constant value between −90°−90° and 0°0°. Maintaining this value over a broad frequency band is of utmost importance since it increases the applicability of the electrical circuit that employs the fractional-order capacitor (FOC). In this work, a molybdenum disulfide (MoS2)-ferroelectric polymer composite is used to design/fabricate an FOC